Photovoltaic and photothermoelectric effect in a double-gated WSe2 device.
نویسندگان
چکیده
Tungsten diselenide (WSe2), a semiconducting transition metal dichalcogenide (TMDC), shows great potential as active material in optoelectronic devices due to its ambipolarity and direct bandgap in its single-layer form. Recently, different groups have exploited the ambipolarity of WSe2 to realize electrically tunable PN junctions, demonstrating its potential for digital electronics and solar cell applications. In this Letter, we focus on the different photocurrent generation mechanisms in a double-gated WSe2 device by measuring the photocurrent (and photovoltage) as the local gate voltages are varied independently in combination with above- and below-bandgap illumination. This enables us to distinguish between two main photocurrent generation mechanisms, the photovoltaic and photothermoelectric effect. We find that the dominant mechanism depends on the defined gate configuration. In the PN and NP configurations, photocurrent is mainly generated by the photovoltaic effect and the device displays a maximum responsivity of 0.70 mA/W at 532 nm illumination and rise and fall times close to 10 ms. Photocurrent generated by the photothermoelectric effect emerges in the PP configuration and is a factor of 2 larger than the current generated by the photovoltaic effect (in PN and NP configurations). This demonstrates that the photothermoelectric effect can play a significant role in devices based on WSe2 where a region of strong optical absorption, caused by, for example, an asymmetry in flake thickness or optical absorption of the electrodes, generates a sizable thermal gradient upon illumination.
منابع مشابه
Photothermoelectric effect in suspended semiconducting carbon nanotubes.
We have performed scanning photocurrent microscopy measurements of field-effect transistors (FETs) made from individual ultraclean suspended carbon nanotubes (CNTs). We investigate the spatial-dependence, polarization-dependence, and gate-dependence of photocurrent and photovoltage in this system. While previous studies of surface-bound CNT FET devices have identified the photovoltaic effect as...
متن کاملStable electrical performance observed in large-scale monolayer WSe2(1-x)S2x with tunable band gap.
Two-dimensional (2D) semiconductor materials have attracted broad interest due to their unique structures and physical properties. The stability of the 2D-material-based devices plays a key role in their practical applications. Here, we report the promising stable electrical performance in the large-scale monolayer WSe2(1-x)S2x with a tunable band gap. Photoluminescence (PL) spectroscopy was ut...
متن کاملDesign and Simulation of a Highly Efficient InGaN/Si Double-Junction Solar Cell
A solar cell is an electronic device which not only harvests photovoltaic effect but also transforms light energy into electricity. In photovoltaic phenomenon, a P-N junction is created to form an empty region. The presented paper aims at proposing a new highly efficient InGaN/Si double-junction solar cell structure. This cell is designed to be used in a real environmental situation, so only s...
متن کاملRole of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors.
This work presents a systematic study toward the design and first demonstration of high-performance n-type monolayer tungsten diselenide (WSe2) field effect transistors (FET) by selecting the contact metal based on understanding the physics of contact between metal and monolayer WSe2. Device measurements supported by ab initio density functional theory (DFT) calculations indicate that the d-orb...
متن کاملTuning electronic transport in epitaxial graphene-based van der Waals heterostructures.
Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 14 10 شماره
صفحات -
تاریخ انتشار 2014